

Objectives

- Find an alternative treatment to hard chrome plating:
 - > same or better corrosion resistance
 - same or better hardness (wear resistance)
 - low roughness (seals protection)
 - > environmentally friendly process : Cr^{VI} free
- Solution: oxinitrocarburizing
- Objectives of the reporting period :
 - > compatibility between hydraulic oils and impregnation product
 - wetability tests
 - > 3D roughness measurements
 - electrochemical measurements for faster corrosion tests

Compatibility hydraulic oils/impregnation

• Ref : oxinitrocarburizing treatment (OxNit) 8

NSS test

800 hours

5 hydraulic oils tested :

OxNit + Houghton Hydrolubric HL-32

600 hours

OxNit + Fuchs Centraulic HLDP-32

775 hours

OxNit + Houghton Cut-Max TK-14

780 hours

OxNit + Sunnen MB30

1600 hours

OxNit + Houghton Cut-Max HNG-21

1700 hours

Wetability tests on coatings


- Important for the oil film between seal and rod
- Tested coatings:
 - Standard hard chrome plating
 - Enhanced hard chrome plating
 - Nitrocarburizing
 - Nitrocarburizing + polishing

- Oxinitrocarburizing
- Oxinitrocarburizing + polishing
- Oxinitrocarburizing + impregnation
- Oxinitrocarburizing + polishing + impregnation

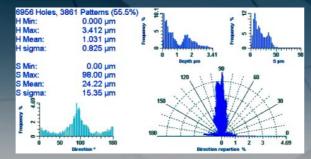
• Results:

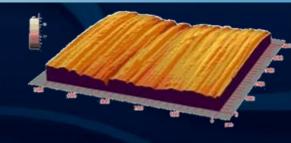
Standard hard chrome plating

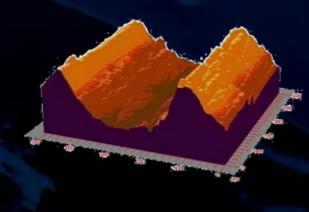
Enhanced hard chrome plating

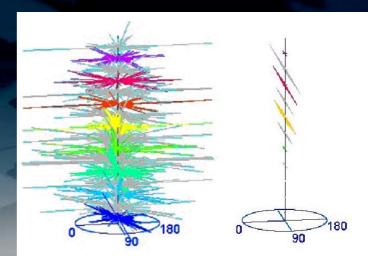
Oxinitrocarburizing + polishing + impregnation

(Prohipp-10-031)

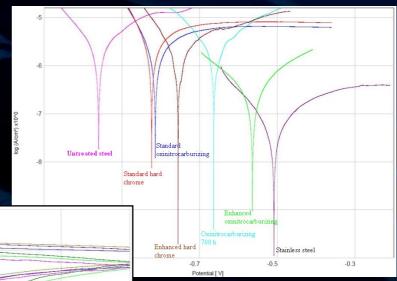

3D roughness measurements on rods

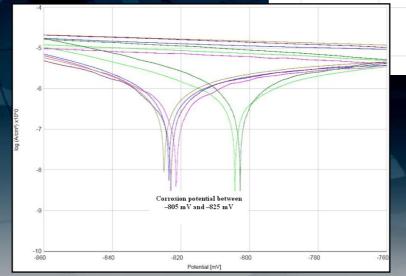



- For better machining parameters
- Rods measured:
 - 5 rods with 5 different grinding parameters (ref G1 to G5)
 - 4 rods with 4 different lubricated machining (lather) parameters (ref L1 to L4)
 - 1 normal CK45 bar (only laminated, not grinded or lathered)
 - 1 standard hard chrome plated bar
 - 1 enhanced hard chrome plated bar


• Results:

- From a trobological point of view, the grinding parameters associated to rod G2 provide the best results
- The best surface morphology is achieved with rod L1
- Hard chrome layers are similar, but the standard hard chrome layer is a little better

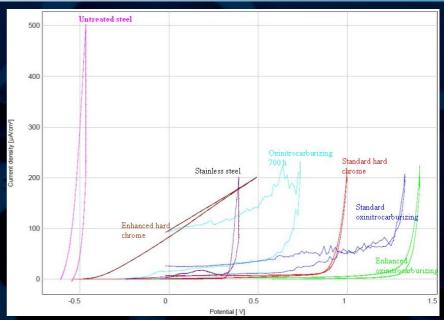


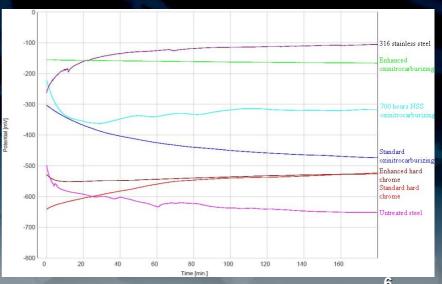


Electrochemical corrosion tests

- Target: to reduce the time needed to check the corrosion resistance of parts (up to 40 days with NSS test!)
- 3 main ways:
 - Cyclic Voltametry :
 - interesting results
 - not accurate enough

Electrochemical corrosion tests




Pitting : not good

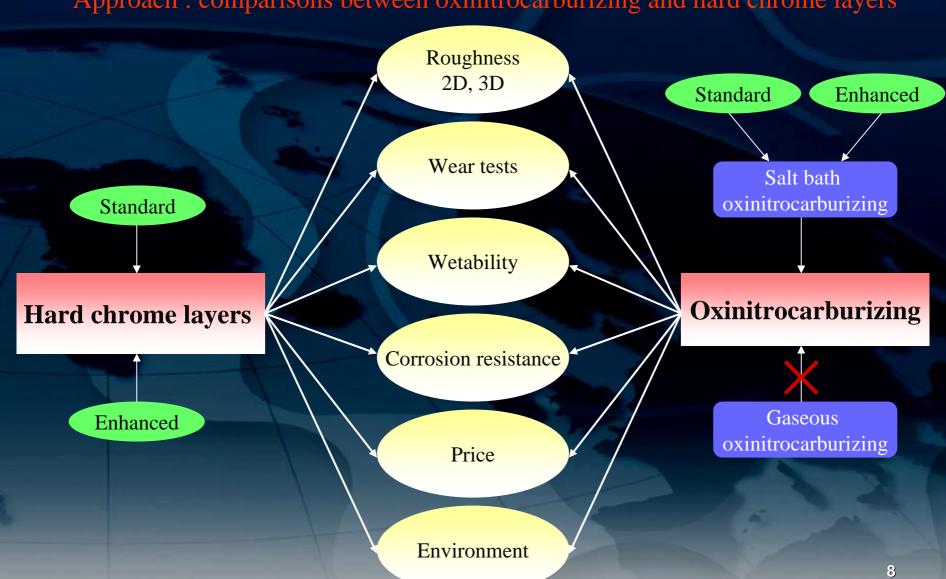
- stainless steel less corrosion resistant than hard chrome plating
- strange result with enhanced hard chrome layers

Free potential :

- good results
- seems to be repeatable
- best way to test the layers (results in 3 to 6 hours)

Objectives and contractors involved

- Objectives: Find an alternative treatment to hard chrome plating:
 - same or better corrosion resistance
 - same or better hardness (wear resistance)
 - low roughness (seals protection)
 - environmentally friendly process : CrVI free
- Contractors involved :



Work performed

Approach: comparisons between oxinitrocarburizing and hard chrome layers

Work performed - Final results

- Roughness:
 - > lower with oxinitrocarburizing if final polishing (14 certificates of control, D3.34)
- Wear tests:
 - > better with oxinitrocarburizing (D3.26, D3.30, Trelleborg wear tests)
- Wetability tests:
 - better with oxinitrocarburizing (Prohipp-10-031)
- Corrosion tests :
 - > standard oxinitrocarburizing better than standard hard chrome plating
 - > enhanced hard chrome plating sometime better than standard oxinitrocarburizing

Work performed - Final results

• Corrosion tests (part 2):

- > enhanced oxinitrocarburizing better than enhanced hard chrome plating
- > inconstant corrosion resistance of enhanced hard chrome plating (Prohipp-10-018, Prohipp-10-021, Prohipp-10-031, Prohipp-10-033, D3.26, D3.30)

• Price:

- difficult to compare
- for small series, lower with hard chrome plating (standard or enhanced) than oxinitrocarburizing
- > for large series, depends on who provides the bars/rods (Prohipp-10-022)

• Environment :

better with oxinitrocarburizing: non toxic salts, Cr^{VI} free process

Achievements VS state of the art

- Demonstration of oxinitrocarburizing process as a real technical alternative to hard chrome plating for hydraulic cylinders (corrosion, hardness, roughness, environment), need to work on the price
- Strong increase of the average corrosion resistance of salt bath oxinitrocarburizing process (400 to 1200 hours), only for cylindrical parts
- Faster and reliable new corrosion test compared to NSS test (3 to 6 hours compared to 5-40 days for NSS)

Exploitable result

Optimised oxinitrocarburized rods for hydraulic cylinders

- Increase of lifetime of rods compared to hard chrome plating (wear resistance, corrosion resistance)
- Patent and trademark (Arcor®) on the process
- Foreseen collaborations:
 - licence agreement
 - > manufacturing agreement
 - joint venture